Solutions
Math 220
HW # 8
November 13, 2018

Exercise 1. Let A and B be sets inside some universal set. Prove DeMorgan's Law

$$(A \cap B)^c = A^c \cup B^c$$
.

Proof.

$$x \in (A \cap B)^{c}$$

$$\iff x \notin A \cap B$$

$$\iff \text{it is not true that } x \in A \text{ and } x \in B$$

$$\iff x \notin A \text{ or } x \notin B$$

$$\iff x \in A^{c} \text{ or } x \in B^{c}$$

$$\iff x \in A^{c} \cup B^{c}$$

Exercise 2. Let $A_1, A_2, ..., A_n$ be a collection of subsets of some universal set. Prove the extended version of DeMorgan's Law

$$(A_1 \cap A_2 \cap \cdots \cap A_n)^c = A_1^c \cup A_2^c \cup \cdots \cup A_n^c.$$

Proof. We prove this by induction.

Base Case (n=2)

The base case is the standard version of DeMorgan's Law from the first exercise.

Ind. Hyp. Assume for some $k \geq 2$

$$(A_1 \cap A_2 \cap \cdots \cap A_k)^c = A_1^c \cup A_2^c \cup \cdots \cup A_k^c.$$

Ind. Step We wish to prove

$$(A_1 \cap A_2 \cap \cdots \cap A_{k+1})^c = A_1^c \cup A_2^c \cup \cdots \cup A_{k+1}^c.$$

Observe

$$(A_1 \cap A_2 \cap \dots \cap A_{k+1})^c = (A_1 \cap A_2 \cap \dots \cap A_k \cap A_{k+1})^c$$

$$= ((A_1 \cap A_2 \cap \dots \cap A_k) \cap A_{k+1})^c$$

$$= (A_1 \cap A_2 \cap \dots \cap A_k)^c \cup A_{k+1}^c$$

$$= (A_1^c \cup A_2^c \cup \dots \cup A_k^c) \cup A_{k+1}^c$$

as desired.

Exercise 3. Let A and B be sets. Prove:

If
$$A \subset B$$
, then $A \cap B^c = \emptyset$.

Proof. Suppose $A \cap B^c \neq \emptyset$. Then:

$$x \in A \cap B^{c}$$

$$\implies x \in A \text{ and } x \in B^{c}$$

$$\implies x \in A \text{ and } x \notin B$$

However, since $A \subset B$, if $x \in A$, then $x \in B$. So we have a contradiction. Therefore $A \cap B^c = \emptyset$.

Exercise 4. Prove for sets A, B, C

$$A \times (B \cap C) = (A \times B) \cap (A \times C).$$

Proof.

$$(x,y) \in A \times (B \cap C)$$

$$\iff x \in A \text{ and } y \in B \cap C$$

$$\iff x \in A \text{ and } (y \in B \text{ and } y \in C)$$

$$\iff (x \in A \text{ and } y \in B) \text{ and } (x \in A \text{ and } y \in C)$$

$$\iff (x,y) \in A \times B \text{ and } (x,y) \in A \times C$$

$$\iff (x,y) \in (A \times B) \cap (A \times C)$$

Exercise 5. Prove or disprove: For sets A, B, C

$$(A \cap B) \cup C = A \cap (B \cup C).$$

Proof. This is not true. Let $A = \{1\}$, $B = \{2\}$, and $C = \{1, 2\}$. Then $(A \cap B) \cup C = \{1, 2\}$, but $A \cap (B \cup C) = \{1\}$. Therefore this is a counterexample to the equality.

Exercise 6. Fill in the blanks with the properties (from the class handout) used to prove this result

$$(A \cup B) \setminus (C \setminus A) = (A \cup B) \cap (C \setminus A)^{c} \qquad by \quad \underline{(a)}$$

$$= (A \cup B) \cap (C \cap A^{c})^{c} \qquad by \quad \underline{(b)}$$

$$= (A \cup B) \cap (A^{c} \cap C)^{c} \qquad by \quad \underline{(c)}$$

$$= (A \cup B) \cap ((A^{c})^{c} \cup C^{c}) \qquad by \quad \underline{(d)}$$

$$= (A \cup B) \cap (A \cup C^{c}) \qquad by \quad \underline{(e)}$$

$$= A \cup (B \cap C^{c}) \qquad by \quad \underline{(f)}$$

$$= A \cup (B \setminus C) \qquad by \quad \underline{(g)}$$

Solution.

- (a) Set Difference
- (b) Set Difference
- (c) Commutative
- (d) DeMorgan's
- (e) Double Complement
- (f) Distributive
- (g) Set Difference

Exercise 7. Give an "algebraic proof" (as in the previous exercise) of the identity

$$((A^c \cup B^c) \setminus A)^c = A.$$

Proof.

$$((A^c \cup B^c) \setminus A)^c = ((A^c \cup B^c) \cap A^c)^c$$
 by Set Difference
= $(A^c \cup B^c)^c \cup A$ by DeMorgan and Double Complement
= $(A \cap B) \cup A$ by DeMorgan and Double Complement
= A by Absorption

Exercise 8. Let X be a set. Show that $\mathcal{P}(X)$ satisfied the definition to be a topology on the set X. (This is called the discrete topology on X.)

Proof. We need to verify the three pieces:

- (1) Both \varnothing and X are subsets of X, so \varnothing , $X \in \mathscr{P}(X)$.
- (2) Let $\{V_1, V_2, V_3, ...\}$ be a collection of subsets of X. If $x \in \bigcup_{i=1}^{\infty} V_i$, then $x \in V_k$ for at least one k. But since $V_k \subset X$, we have $x \in X$. Therefore $\bigcup_{i=1}^{\infty} V_i \subset X$, hence $\bigcup_{i=1}^{\infty} V_i \in \mathscr{P}(X)$.
- (3) Let $\{V_1, V_2, ..., V_n\}$ be a collection of subsets of X. If $x \in \bigcap_{i=1}^n V_i$, then $x \in V_k$ for all k. But since $V_k \subset X$ for all k, we have $x \in X$. Therefore $\bigcap_{i=1}^n V_i \subset X$, hence $\bigcap_{i=1}^\infty V_i \in \mathscr{P}(X)$.

Exercise 9. Let $X = \{a, b, c, d, e\}$ and $Y = \{1, 2, 3, 4, 5, 6\}$. Define the function $f : X \to Y$ by

$$f = \{(a,3), (b,5), (c,2), (d,3), (e,6)\}.$$

- (a) What is the domain and co-domain of f?
- (b) Give the values of f(a), f(b), and f(e).
- (c) What is the range of f?

- (d) Is c the inverse image of 2?
- (e) What is the inverse image of 3? the inverse image of 4? Solution.
- (a) Domain of f is X, co-domain of f is Y.
- (b) f(a) = 3, f(b) = 5, and f(e) = 6.
- (c) The range of f is $f(X) = \{2, 3, 5, 6\}$.
- (d) Yes, (c, 2) is the only pair that 2 appears in, so c is the inverse image of 2.
- (e) $f^{-1}(\{3\}) = \{a, d\}.$ $f^{-1}(\{4\}) = \varnothing.$

Exercise 10. Let $f: X \to Y$ be a function. Let A and B be subsets of X. Below are two statements, one of which is true and one of which is false. Decide which is true and which is false. Give a counterexample to verify the false one, and prove the true one.

$$f(A \cap B) = f(A) \cap f(B)$$

$$f(A \cup B) = f(A) \cup f(B)$$

Proof. $f(A \cap B) \neq f(A) \cap f(B)$.

Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$. Let A = [-1, 0] and B = [0, 1]. Then $A \cap B = \{0\}$ so $f(A \cap B) = \{0\}$. However, f(A) = f(B) = [0, 1], so $f(A) \cap f(B) = [0, 1] \neq \{0\}$.

To prove the other result, observe

$$x \in f(A \cup B)$$

$$\iff \exists y \in A \cup B, f(y) = x$$

$$\iff \exists (y \in A \text{ or } y \in B), f(y) = x$$

$$\iff \exists y \in A, f(y) = x \text{ or } \exists y \in B, f(y) = x$$

$$\iff x \in f(A) \text{ or } x \in f(B)$$

$$\iff x \in f(A) \cup f(B)$$